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High-precision calculation of the eigenvalues for the
x*+ Ax?*/(1 + gx*) potential
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Abstract. An analytic continuation procedure using a Taylor series is used to produce very
accurate wavefunctions and eigenvalues for the one-dimensional anharmonic oscillator
governed by the potential V(x)=x?+Ax?/(1+gx?).

1. Introduction

Considerable interest has centred on analytical and numerical solutions of the one-
dimensional Schrodinger equation with the anharmonic potential

V(x)=x>+Ax%/(1+gx?). (1)

Mitra (1978) has pointed out that this potential is related to certain specific models
in laser theory (Haken 1970) as well as zero-dimensional field theory (Risken and
Vollmer 1967).

A variety of numerical procedures have been employed to obtain the eigenvalues
for the ground state and first few excited states for a range of values of A and g. The
Ritz variational method used in combination with the Givens-Householder algorithm
was used by Mitra (1978) to determine the ground state and first two excited states,
Problems were encountered for large values of g. Kaushal (1979) used perturbation
theory for the restricted class having small g and large A. The potential was expanded
under the condition gx® < 1. Bessis and Bessis (1980) avoided the numerical quadrature
in the approach of Mitra (1978) by expanding in terms of a basis set of harmonic
oscillator functions. They obtained eight-digit accuracy for the ground state and first
three excited states for A and g ranging from 0.1 to 500. Lai and Lin (1982) formed
the [6, 6] Padé approximants to the energy perturbation series to obtain an accuracy
similar to that of Bessis and Bessis (1980). First-order perturbation theory and direct
numerical integration were employed in the calculations by Killingbeck (1979) and
Garcia and Killingbeck (1979). Fack and Vanden Berghe (1985) used direct numerical
integration of the Schrddinger equation by introducing a finite difference representation
of D’y(x). Finally, Handy (1985) has employed the Hankel-Hadamard moment
determinant analysis to obtain upper and lower bounds for the ground and first excited
states.

Exact solutions to the above problem have also been presented by Flessas (1981,
1982), Varma (1981), Lai and Lin (1982) and Whitehead et al (1982). These are
obtained under the restrictive conditions A <0, g>0and A =A(g), E = E(g).
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In this paper an analytic continuation approach originally introduced by Holubec
and Stauffer (1985) is used to obtain the eigenvalues and eigenfunctions for the potential
(1) to very high accuracy. Carrying out the computations on a 32-digit precision
computer, it is not too difficult to obtain results accurate to this precision.

2. Analytic continuation

The standard Taylor series approach to the solution of a differential equation (DE)
with initial values given at z, is to approximate the solution in the neighbourhood of
2o by a truncated Taylor series. The values of the derivatives at z, are determined from
successive differentiations of the pDeE. One then proceeds to construct a new Taylor
series about z, = z,+ h using the derivatives of the first series. This process continues
to generate an analytic continuation of the solution of the DE along the path
{20, 21, 23, ...}. This technique requires successive differentiation of the DE, and
becomes restricted if the DE has singularities anywhere in the complex z plane.

Holubec and Stauffer (1985) have proposed a way around this problem based on
the idea of analytically continuing a Frobenius series rather than a Taylor series. The
method is applied to second-order linear pE with a regular singularity and with analytic
coefficients which are finite polynomials. In practice the method works for arbitrary
order and for more general analytic coefficients. The technique was originally applied
to second-order linear DE of the form

u'+P(z2)u'+Q(z)u=0 (2)

with P(z) and Q(z) finite polynomials.
In order to handle the potential (1) we have modified the method of Holubec and
Stauffer (1985) so that we can handle a pE of the form

u'+[P(z)/ Q(z)Ju=0 (3)
or

Q(z)u"+ P(z)u=0. (4)
Working with the Schrodinger equation

u"—V(z)u= Eu (5)
with V(z) having the form (1), P(z) and Q(z) are both finite polynomials

P(z)=E+(Eg—A—1)z*-gz* (6)

Q(z)=1+g2". (7)

Naturally this approach will not work if we are close to points such that Q(z) =0.

The general solution u is expanded in a Taylor series about the point z, as
N,

u= 'ZO ci(z—z0)" (8)
The polynomial coefficients P(z) and Q(z) must be expanded in a similar manner:

P(z)= % Pz-z)' (9)

Q)= 3 Gz-2)! (10)
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By substituting these expansions for u and for P and Q into the pEe, and by setting
the coefficients of the different powers of (z — z,) to zero, we arrive at a set of recurrence
relations to generate the coefficients c,.

For the potential form (1) the complete expansions for P(z) and Q(z) become

P(z)=E+(Eg—1-A)z5—gzo+{2(Eg—1—A)zo—4gzo}(z — 2,)
+{Eg—1- X —6gz3}(z~20)* ~ 4gzo(z = 2)° — g(z = 2)* (11)
Q(2) =1+ gzo+2gzo(z ~ 20) + gz ~ 20)™. (12)
These lead to the general recurrence relation for the ¢; coefficients,

-~ fod ~ 4 -~
(k+2)(k+1)Qok-at (k+1)kQ ¢y + k(k—1)Quc + Y. Pey_;=0 (13)
1=0

which is valid for k =0 with the understanding that ¢, =0 if k <0. The initial values
¢co=u(zy) and ¢, = u'(z,) are used to start the series.

If we start from the origin, we can use the above results with z,=0. In the general
case a Frobenius series is used, with the appropriate characteristic exponent. For the
oscillator problem under examination here, the characteristic exponent is 0, and so
the regular Taylor series about z,= 0 suffices.

3. Results

We have applied the analytic continuation procedure as described to compute the first
few eigenvalues with the same boundary condition as employed by Fack and Vanden
Berghe (1985), namely that the Dirichlet boundary condition u(R) =0 is imposed with
R =10.0. We have also examined the effect of varying R. The eigenvalues are deter-
mined by starting at the origin with z, =0 and using the Taylor series to compute the
values of u and u’ at the first step z=h. The range for z is subdivided into N, equal
parts, so that h = R/ N,. Then z, is set to h and the series (8) used to compute u and
u' at 2h. In this way the wavefunction is generated out to z=R. All of this is done
using an initial guess for the eigenvalue E. The value of E is then adjusted until the
value of u(R) is as close to zero as is possible within the precision of the calculations.

In practice we first find two values of E which lie on either side of the correct
eigenvalue, such that they produce values for u(R) having opposite signs. We then
use the secant method to generate a new guess for E, and repeat the process until we
converge on the correct value. The iterates for E are generated using

i+1 i i E'-E™
E E u(R)u"(R)—u"_‘(R)'
We have found that 7-10 iterations are required on average to achieve the precision
presented in the tables.

The initial conditions at z=0 must be chosen properly to produce either even or
odd wavefunctions. Wavefunctions with even parity are generated by choosing u(0) = ¢
and u'(0) =0, with ¢ an arbitrary normalisation constant. Odd-parity wavefunctions
require the choice of u(0)=0 and u’(0) = c¢. The ground state has even parity and the
excited states oscillate between even and odd parity.

The results were also computed for the special case of A =g =0 for which exact
eigenvalues are readily obtained (E, =2i —1). We found that our results were accurate
to the 32-digit precision used in the calculations.

(14)
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Table 1. Comparison of eigenvalues obtained by various methods: (a) present study, (b)
Fack and Vanden Berghe (1985), (¢) Mitra (1978), (d) Bessis and Bessis (1980), (e) Lai
and Lin (1982), (f) Killingbeck (1979), (g) Handy (1985).

A=01,g=01

E, (a) 1.043173 713044445233 778700870 546 1
(b) 1.04317371
(¢) 104317
(d) 104317371
(e) 104317371
(f) 1.04317408
(g) 1.04317371<E,;<1.04317372

E, (a) 3.120081864016 152 708 645 886 536 523 5
(b) 3.120081 86
(¢) 3.12008
(d) 3.12008186
(e) 3.12008186
(g) 3.120081 864 < E, < 3.120 081 865

E,  (a) 5.181094785 884700927 110 409 072 888 3
(b) 5.13109478
{¢) 5.18109
(d) 5.18109479
(e) 518109479
(f) 5.18109506

E, (a) 7.231009980655889 245108 3689314951
(b) 7.23100995
(d) 7.23100998
(e) 7.23100998

E; (a) 9.272816970035252254 582438478906 5
(b) 9.27281691
(f) 9.272818

Tables 1-6 present our results for seven sets of A, g values, and compare them with
calculations of other authors. In all of the computations N, was set to 40, as we found
that this value was better than required to obtain the precision desired. The value of
N, had to be varied in order to adjust the step size small enough to obtain this accuracy.
For values of A and g <10, values of N, in the range 80-100 were sufficient, whereas
this had to be increased to 200-300 for those cases where g=100. Even with this
choice, the results for g =100 are only accurate to 21-24 digits instead of the 32
obtained in the other cases. Higher precision requires larger N,, more iterations and
longer computation times.

As can be seen from tables 1-6, our results demonstrate that the calculations carried
out by the other authors are in general quite good but there are some deficiences. In
the cases where comparisons can be made, the results of Killingbeck (1979) are
inaccurate in the last few digits. The results obtained by Fack and Vanden Berghe
(1985) are accurate to nine places for the lowest eigenvalues, but tend to be less
accurate for E, and E;. Their results for the A = 100 cases, however, are not as accurate
as those obtained by others. The results obtained by Mitra (1978), Bessis and Bessis
(1980) and Lai and Lin (1982) are generally good to the accuracy quoted, but most
did not compute the higher eigenvalues. The upper and lower bounds computed by



High-precision eigenvalues

Table 2. Eigenvalues (same format as in table 1).

A=0.1, g=100.0

E,

E,

E,

E;s

(a)
(b)

(c)

(d)
f)
(a)
(b)
(¢)

(d)
(a)
(b)
()
(d)
(f)
(a)
(b)
(d)
(a)
(b)
f)

1.000 841 102 403 452 905 18
1.000 841 10

1.000 84

1.000 841 1

1.000 841 43

3.000983 177 778 238 663 773 08
3.000983 18

3.00098

3.000983 1

5.000927 544 679 517 518 352
5.000927 54

5.00093

5.0009257

5.000927 8

7.000 984 495 836 019 294 564 67
7.000 984 47
7.000 584 5

9.000 948 590 765 685 440 341
9.000 948 53
9.000 948

Table 3. Eigenvalues (same format as in table 1).

A =100.0, g=0.1

E,

E;

Ey

E,

E;

(a)
(b)
(¢)

(g)

)

(b)
(d)
(e)
(a)
(b)
f)

9.976 180 087 723 021 055 029 793 333903 4
9.976 178 31

9.976 18

9.976 18009

9.976 180 09

9.976 180

9.976 18007 < E, <9.976 180 12

29.781 191110 776 574 481 828 222 255 353
29.781 17575

29.781 19

29.7811911

29.781 19111

29.78119110< E, < 29.781 191 13

49.292 690 504 626 860 802 043 097 677 054
49.292 623 58

49.292 69

49.292 690 5

49.292 690 50

49.292 69

68.513 062234 511 134 635 185 514 093 924
68.512 86108
68.5130522
68.513 062 23

87.444 711 409 977 161 062 121 962 028 609

87.444 233 67
87.4447
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Table 4. Eigenvalues (same format as in table 1).

A =100.0, g = 100.0

E,

E,

E,

E,

)

()]

(d)
(a)

f)

1.836 335833448218317 11792
1.836 33444

1.836 4

1.836 3850

1.836 3373

3.983 098 339 487 812 876 056 641 094 2
3.983 098 36

39831

39830992

5928 328 571 544 726 169 988 12
5.928 32790

5.928

59283525

59283293

7.984 443 523 273 823 549 904 268 579 1
7.984 443 54
7.984 444 8

9.949 160 962 809 596 900 248 32
9.949 160 38
9.949 162

Table 5. Eigenvalues (same format as in table 1).

A =10.0, g=10.0

E;

E;

(a)
(b)
(¢)
(d)

(a)
(b)
(¢)
(d)

(a)
(b)
(e)
(d)

(a)
(b)
(d)

(a)
(b)

1.580 022 327 391 499 803 559 412471 384 2
1.580 022 33

1.580 02

1,5800249

3.879036 830 882 568 129 891720413 2724
3.879 036 83

3.87903

3.8790372

5.832767 532465361 741 388 831477 8054
5.832767 52

5.83277

5.8327692

7.903 154 159 824 102 829 908 846 549 867 6
7.903 15413
7.903 1549

9.882298 728 779 887 266 853 513 125186 7
9.882 298 66
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Table 6. Eigenvalues (same format as in table 1).

A=01,g=20

E,  (a) 1.017180290061 535662051677 187 643 4
{e) 1.01728160
{(g) 1.017176<E,<1.017185

E, (@) 3.032765793 421 440 006 669 974 400 493 4
(e) 3.03295727
(g) 3.032758<E,<3.032772

A =100.0, g=2.0

E,  (a) 8.758278625605 689 329 589 418 838 744 5
(e) 8.75827863
(g) 8.7372<E,<8.7594

E, (a) 23.743325864 919 321 032 558 358 876 985
(e) 23.743326 04
(g) 23.73<E,<23.75

Table 7. Eigenvalues as a function of R.

R A=g=10

E, 4 1.232351173516 348 218 110842 056 8226
6 1.232 350 723 406 058 865 196 218 560 628 4

10 1.232 350 723 406 057 813 862 069 958 681 4

15 1.232 350 723 406 057 813 862 069 958 681 4

20 1.232350 723 406 057 813 862 069 958 681 4

E; 4 9.700 353 051 656 511 764 481 854 973 816 1
6 9.684 042017 103 850 820 123 068 959 191 4

10 9.684 042015230169 589613 605 8135206

15 9.684 042015 230 169 589 613 605 813 5206

20 9.684 042 015 230 169 589 613 605 813 5206

R A=g=1000

E, 4 1.836 336 592 285 584 867 892 06
6 1.836 335833 448 220 553 007 79
10 1.836 335833 44821831711792
15 1.836 335833448 21831711791
20 1.836 335833448 218 317 11791

E; 4 9.967 764 880 800 496 450 452 86
6 9.949 160965 214 562 344 164 91

10 9.949 160 962 809 596 300 248 32

15 9.949 160 962 809 596 900 248 32

20 9.949 160 962 809 596 900 248 32
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Handy (1985) are correct, whereas there is significant error in the values found by Lai
and Lin (1982) for g =2.0.

We have also examined the question of how the value of R affects the eigenvalues.
Table 7 presents the results for the cases A =1.0, g =1.0 and A =100.0, g = 100.0, each
computed for E, and E,. It is readily apparent that the choice of R =10.0 is optimal
for the precision obtained in this study.

4. Conclusions

The analytic continuation procedure of Holubec and Stauffer (1985) offers a straightfor-
ward solution to the problem of obtaining high-accuracy wavefunctions and eigenvalues
for Schrddinger’s equation. Although the procdure is based on functions P(z) and
Q(z) which are finite polynomials, in practice it works very well in any case where
the functions (or the potential) can be expanded in a Taylor series, and analytic
coefficients obtained. This was demonstrated in their paper by computing the phase
shifts for the potential

V(r)y=—(2+2/r) exp(—2r). (15)

The only real limit to the precision is the precision of the computer employed to carry
out the calculations. The disadvantage of this technique lies in the requirement to
construct the Taylor series (11) and (12) and the corresponding recurrence relations
(13) for each specific potential under study. However, if high precision is required in
the result, this is not an exorbitant cost.

It is obvious that this approach can be applied readily to a variety of potential
forms. Work is currently in progress on the oscillator problem with a perturbation of
the form Ax®. Similar high-accuracy results are obtainable in this problem as well.

References

Bessis N and Bessis G 1980 J. Math. Phys. 21 2780

Fack V and Vanden Berghe G 1985 J. Phys. A: Marh. Gen. 18 3355

Flessas G 1981 Phys. Lett. 83A 121

—— 1982 J. Phys. A: Math, Gen. 15 L97

Garcia S and Killingbeck J 1979 Phys. Let. 71A 17

Haken H 1970 Encyclopedia of Physics vol 25/2C (Princeton, NJ: Van Nostrand)
Handy C R 1985 J. Phys. A: Math. Gen. 18 3593

Holubec A and Stauffer A D 1985 J. Phys. A: Marh. Gen. 18 2141

Kaushal R 1979 J. Phys. A: Math. Gen. 12 1L253

Killingbeck J 1979 Comput. Phys. Commun. 18 211

Lai C and Lin H 1982 J. Phys. A: Math. Gen. 15 1495

Mitra A 1978 J. Math. Phys. 19 2018

Risken H and Vollmer H 1967 Z. Phys. 201 323

Varma V 1981 J. Phys. A: Math. Gen. 14 1489

Whitehead R, Watt A, Flessas G and Nagarajan M 1982 J. Phys. A: Math. Gen. 15 1217



