High-precision calculation of the eigenvalues for the $\mathrm{x}^{2}+\lambda \mathrm{x}^{2} /\left(1+\mathrm{gx}{ }^{2}\right)$ potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 211563
(http://iopscience.iop.org/0305-4470/21/7/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:38

Please note that terms and conditions apply.

High-precision calculation of the eigenvalues for the $x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ potential

R J W Hodgson
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 9B4

Received 24 July 1987

Abstract

An analytic continuation procedure using a Taylor series is used to produce very accurate wavefunctions and eigenvalues for the one-dimensional anharmonic oscillator governed by the potential $V(x)=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$.

1. Introduction

Considerable interest has centred on analytical and numerical solutions of the onedimensional Schrödinger equation with the anharmonic potential

$$
\begin{equation*}
V(x)=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right) . \tag{1}
\end{equation*}
$$

Mitra (1978) has pointed out that this potential is related to certain specific models in laser theory (Haken 1970) as well as zero-dimensional field theory (Risken and Vollmer 1967).

A variety of numerical procedures have been employed to obtain the eigenvalues for the ground state and first few excited states for a range of values of λ and g. The Ritz variational method used in combination with the Givens-Householder algorithm was used by Mitra (1978) to determine the ground state and first two excited states. Problems were encountered for large values of g. Kaushal (1979) used perturbation theory for the restricted class having small g and large λ. The potential was expanded under the condition $g x^{2}<1$. Bessis and Bessis (1980) avoided the numerical quadrature in the approach of Mitra (1978) by expanding in terms of a basis set of harmonic oscillator functions. They obtained eight-digit accuracy for the ground state and first three excited states for λ and g ranging from 0.1 to 500 . Lai and Lin (1982) formed the [6,6] Padé approximants to the energy perturbation series to obtain an accuracy similar to that of Bessis and Bessis (1980). First-order perturbation theory and direct numerical integration were employed in the calculations by Killingbeck (1979) and Garcia and Killingbeck (1979). Fack and Vanden Berghe (1985) used direct numerical integration of the Schrödinger equation by introducing a finite difference representation of $\mathrm{D}^{2} y(x)$. Finally, Handy (1985) has employed the Hankel-Hadamard moment determinant analysis to obtain upper and lower bounds for the ground and first excited states.

Exact solutions to the above problem have also been presented by Flessas (1981, 1982), Varma (1981), Lai and Lin (1982) and Whitehead et al (1982). These are obtained under the restrictive conditions $\lambda<0, g>0$ and $\lambda=\lambda(g), E=E(g)$.

In this paper an analytic continuation approach originally introduced by Holubec and Stauffer (1985) is used to obtain the eigenvalues and eigenfunctions for the potential (1) to very high accuracy. Carrying out the computations on a 32 -digit precision computer, it is not too difficult to obtain results accurate to this precision.

2. Analytic continuation

The standard Taylor series approach to the solution of a differential equation (DE) with initial values given at z_{0} is to approximate the solution in the neighbourhood of z_{0} by a truncated Taylor series. The values of the derivatives at z_{0} are determined from successive differentiations of the DE. One then proceeds to construct a new Taylor series about $z_{1}=z_{0}+h$ using the derivatives of the first series. This process continues to generate an analytic continuation of the solution of the $D E$ along the path $\left\{z_{0}, z_{1}, z_{2}, \ldots\right\}$. This technique requires successive differentiation of the DE, and becomes restricted if the DE has singularities anywhere in the complex z plane.

Holubec and Stauffer (1985) have proposed a way around this problem based on the idea of analytically continuing a Frobenius series rather than a Taylor series. The method is applied to second-order linear DE with a regular singularity and with analytic coefficients which are finite polynomials. In practice the method works for arbitrary order and for more general analytic coefficients. The technique was originally applied to second-order linear $D E$ of the form

$$
\begin{equation*}
u^{\prime \prime}+P(z) u^{\prime}+Q(z) u=0 \tag{2}
\end{equation*}
$$

with $P(z)$ and $Q(z)$ finite polynomials.
In order to handle the potential (1) we have modified the method of Holubec and Stauffer (1985) so that we can handle a DE of the form

$$
\begin{equation*}
u^{\prime \prime}+[P(z) / Q(z)] u=0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
Q(z) u^{\prime \prime}+P(z) u=0 \tag{4}
\end{equation*}
$$

Working with the Schrödinger equation

$$
\begin{equation*}
u^{\prime \prime}-V(z) u=E u \tag{5}
\end{equation*}
$$

with $V(z)$ having the form (1), $P(z)$ and $Q(z)$ are both finite polynomials

$$
\begin{align*}
& P(z)=E+(E g-\lambda-1) z^{2}-g z^{4} \tag{6}\\
& Q(z)=1+g z^{2} . \tag{7}
\end{align*}
$$

Naturally this approach will not work if we are close to points such that $Q(z)=0$.
The general solution u is expanded in a Taylor series about the point z_{0} as

$$
\begin{equation*}
u=\sum_{i=0}^{N_{t}} c_{i}\left(z-z_{0}\right)^{\prime} . \tag{8}
\end{equation*}
$$

The polynomial coefficients $P(z)$ and $Q(z)$ must be expanded in a similar manner:

$$
\begin{align*}
& P(z)=\sum_{i=0}^{p} \tilde{P}_{i}\left(z-z_{0}\right)^{i} \tag{9}\\
& Q(z)=\sum_{i=0}^{q} \tilde{Q}_{i}\left(z-z_{0}\right)^{i} \tag{10}
\end{align*}
$$

By substituting these expansions for u and for P and Q into the DE, and by setting the coefficients of the different powers of $\left(z-z_{0}\right)$ to zero, we arrive at a set of recurrence relations to generate the coefficients c_{i}.

For the potential form (1) the complete expansions for $P(z)$ and $Q(z)$ become

$$
\begin{gather*}
P(z)=E+(E g-1-\lambda) z_{0}^{2}-g z_{0}^{4}+\left\{2(E g-1-\lambda) z_{0}-4 g z_{0}^{3}\right\}\left(z-z_{0}\right) \\
\quad+\left\{E g-1-\lambda-6 g z_{0}^{2}\right\}\left(z-z_{0}\right)^{2}-4 g z_{0}\left(z-z_{0}\right)^{3}-g\left(z-z_{0}\right)^{4} \tag{11}\\
Q(z)=1+g z_{0}^{2}+2 g z_{0}\left(z-z_{0}\right)+g\left(z-z_{0}\right)^{2} . \tag{12}
\end{gather*}
$$

These lead to the general recurrence relation for the c_{i} coefficients,
$(k+2)(k+1) \tilde{Q}_{0} c_{k+2}+(k+1) k \tilde{Q}_{1} c_{k+1}+k(k-1) \tilde{Q}_{2} c_{k}+\sum_{i=0}^{4} \tilde{P}_{i} c_{k-i}=0$
which is valid for $k \geqslant 0$ with the understanding that $c_{k}=0$ if $k<0$. The initial values $c_{0}=u\left(z_{0}\right)$ and $c_{1}=u^{\prime}\left(z_{0}\right)$ are used to start the series.

If we start from the origin, we can use the above results with $z_{0}=0$. In the general case a Frobenius series is used, with the appropriate characteristic exponent. For the oscillator problem under examination here, the characteristic exponent is 0 , and so the regular Taylor series about $z_{0}=0$ suffices.

3. Results

We have applied the analytic continuation procedure as described to compute the first few eigenvalues with the same boundary condition as employed by Fack and Vanden Berghe (1985), namely that the Dirichlet boundary condition $u(R)=0$ is imposed with $R=10.0$. We have also examined the effect of varying R. The eigenvalues are determined by starting at the origin with $z_{0}=0$ and using the Taylor series to compute the values of u and u^{\prime} at the first step $z=h$. The range for z is subdivided into N_{s} equal parts, so that $h=R / N_{s}$. Then z_{0} is set to h and the series (8) used to compute u and u^{\prime} at $2 h$. In this way the wavefunction is generated out to $z=R$. All of this is done using an initial guess for the eigenvalue E. The value of E is then adjusted until the value of $u(R)$ is as close to zero as is possible within the precision of the calculations.

In practice we first find two values of E which lie on either side of the correct eigenvalue, such that they produce values for $u(R)$ having opposite signs. We then use the secant method to generate a new guess for E, and repeat the process until we converge on the correct value. The iterates for E are generated using

$$
\begin{equation*}
E^{i+1}=E^{i}-u^{i}(R) \frac{E^{i}-E^{i-1}}{u^{i}(R)-u^{i-1}(R)} . \tag{14}
\end{equation*}
$$

We have found that 7-10 iterations are required on average to achieve the precision presented in the tables.

The initial conditions at $z=0$ must be chosen properly to produce either even or odd wavefunctions. Wavefunctions with even parity are generated by choosing $u(0)=c$ and $u^{\prime}(0)=0$, with c an arbitrary normalisation constant. Odd-parity wavefunctions require the choice of $u(0)=0$ and $u^{\prime}(0)=c$. The ground state has even parity and the excited states oscillate between even and odd parity.

The results were also computed for the special case of $\lambda=g=0$ for which exact eigenvalues are readily obtained ($E_{1}=2 i-1$). We found that our results were accurate to the 32 -digit precision used in the calculations.

Table 1. Comparison of eigenvalues obtained by various methods: (a) present study, (b) Fack and Vanden Berghe (1985), (c) Mitra (1978), (d) Bessis and Bessis (1980), (e) Lai and Lin (1982), (f) Killingbeck (1979), (g) Handy (1985).

		$\lambda=0.1, g=0.1$
E_{1}	(a)	1.0431737130444452337787008705461
	(b)	1.04317371
	(c)	1.04317
	(d)	1.04317371
	(e)	1.04317371
	(f)	1.04317408
	(g)	$1.04317371<E_{1}<1.04317372$
E_{2}	(a)	3.1200818640161527086458865365235
	(b)	3.12008186
	(c)	3.12008
	(d)	3.12008186
	(e)	3.12008186
	(g)	$3.120081864<E_{2}<3.120081865$
E_{3}	(a)	5.1810947858847009271104090728883
	(b)	5.18109478
	(c)	5.18109
	(d)	5.18109479
	(e)	5.18109479
	(f)	5.18109506
E_{4}	(a)	7.2310099806558892451083689314951
	(b)	7.23100995
	(d)	7.23100998
	(e)	7.23100998
E_{5}	(a)	9.2728169700352522545824384789065
	(b)	9.27281691
	(f)	9.272818

Tables 1-6 present our results for seven sets of λ, g values, and compare them with calculations of other authors. In all of the computations N_{t} was set to 40 , as we found that this value was better than required to obtain the precision desired. The value of N_{s} had to be varied in order to adjust the step size small enough to obtain this accuracy. For values of λ and $g \leqslant 10$, values of N_{s} in the range $80-100$ were sufficient, whereas this had to be increased to $200-300$ for those cases where $g=100$. Even with this choice, the results for $g=100$ are only accurate to $21-24$ digits instead of the 32 obtained in the other cases. Higher precision requires larger N_{s}, more iterations and longer computation times.

As can be seen from tables 1-6, our results demonstrate that the calculations carried out by the other authors are in general quite good but there are some deficiences. In the cases where comparisons can be made, the results of Killingbeck (1979) are inaccurate in the last few digits. The results obtained by Fack and Vanden Berghe (1985) are accurate to nine places for the lowest eigenvalues, but tend to be less accurate for E_{4} and E_{5}. Their results for the $\lambda=100$ cases, however, are not as accurate as those obtained by others. The results obtained by Mitra (1978), Bessis and Bessis (1980) and Lai and Lin (1982) are generally good to the accuracy quoted, but most did not compute the higher eigenvalues. The upper and lower bounds computed by

Table 2. Eigenvalues (same format as in table 1).

$$
\lambda=0.1, g=100.0
$$

$E_{1} \quad$ (a) 1.00084110240345290518
(b) 1.00084110
(c) 1.00084
(d) 1.0008411
(f) 1.00084143
$E_{2} \quad$ (a) 3.00098317777823866377308
(b) 3.00098318
(c) 3.00098
(d) 3.0009831
$E_{3} \quad$ (a) 5.000927544679517518352
(b) 5.00092754
(c) 5.00093
(d) 5.0009257
(f) 5.0009278
$E_{4} \quad$ (a) 7.00098449583601929456467
(b) 7.00098447
(d) 7.0009845
$E_{s} \quad$ (a) 9.000948590765685440341
(b) 9.00094853
(f) 9.000948

Table 3. Eigenvalues (same format as in table 1).

	$\lambda=100.0, g=0.1$
E_{1}	(a) 9.9761800877230210550297933339034
	(b) 9.97617831
	(c) 9.97618
	(d) 9.97618009
	(e) 9.97618009
	(f) 9.976180
	(g) $9.97618007<E_{1}<9.97618012$
E_{2}	(a) 29.781191110776574481828222255353
	(b) 29.78117575
	(c) 29.78119
	(d) 29.7811911
	(e) 29.78119111
	(g) $29.78119110<E_{2}<29.78119113$
E_{3}	(a) 49.292690504626860802043097677054
	(b) 49.29262358
	(c) 49.29269
	(d) 49.2926905
	(e) 49.29269050
	(f) 49.29269
E_{4}	(a) 68.513062234511134635185514093924
	(b) 68.51286108
	(d) 68.5130522
	(e) 68.51306223
E_{5}	(a) 87.444711409977161062121962028609
	(b) 87.44423367
	(f) 87.4447

Table 4. Eigenvalues (same format as in table 1).

$\lambda=100.0, g=100.0$		
E_{1}	(a)	1.83633583344821831711792
	(b)	1.83633444
	(c)	1.8364
	(d)	1.8363850
	(f)	1.8363373
E_{2}	(a)	3.9830983394878128760566410942
	(b)	3.98309836
	(c)	3.9831
	(d)	3.9830992
E_{3}	(a)	5.92832857154472616998812
	(b)	5.92832790
	(c)	5.928
	(d)	5.9283525
	(f)	5.9283293
E_{4}	(a)	7.9844435232738235499042685791
	(b)	7.98444354
	(d)	7.9844448
E_{5}	(a)	9.94916096280959690024832
	(b)	9.94916038
	(f)	9.949162

Table 5. Eigenvalues (same format as in table 1).

$\lambda=10.0, g=10.0$		
E_{1}	(a)	1.5800223273914998035594124713842
	(b)	1.58002233
	(c)	1.58002
	(d)	1.5800249
E_{2}	(a)	3.8790368308825681298917204132724
	(b)	3.87903683
	(c)	3.87903
	(d)	3.8790372
E_{3}	(a)	5.8327675324653617413888314778054
	(b)	5.83276752
	(c)	5.83277
	(d)	5.8327692
E_{4}	(a)	7.9031541598241028299088465498676
	(b)	7.90315413
	(d)	7.9031549
E_{s}	(a)	9.8822987287798872668535131251867
	(b)	9.88229866

Table 6. Eigenvalues (same format as in table 1).

$\lambda=0.1, g=2.0$		
E_{1}	(a)	1.0171802900615356620516771876434
	(e)	1.01728160
	(g)	$1.017176<E_{1}<1.017185$
E_{2}	(a)	3.0327657934214400066699744004934
	(e)	3.03295727
	(g)	$3.032758<E_{2}<3.032772$
$\lambda=100.0, g=2.0$		
E_{1}	(a)	8.7582786256056893295894188387445
	(e)	8.75827863
	(g)	$8.7572<E_{1}<8.7594$
E_{2}	(a)	23.743325864919321032558358876985
	(e)	23.74332604
	(g)	$23.73<E_{2}<23.75$

Table 7. Eigenvalues as a function of R.

	R	$\lambda=g=1.0$
E_{1}	4	1.2323511735163482181108420568226
	6	1.2323507234060588651962185606284
	10	1.2323507234060578138620699586814
	15	1.2323507234060578138620699586814
	20	1.2323507234060578138620699586814
E_{5}	4	9.7003530516565117644818549738161
	6	9.6840420171038508201230689591914
	10	9.6840420152301695896136058135206
	15	9.6840420152301695896136058135206
	20	9.6840420152301695896136058135206
	R	$\lambda=g=100.0$
E_{1}	4	1.83633659228558486789206
	6	1.83633583344822055300779
	10	1.83633583344821831711792
	15	1.83633583344821831711791
	20	1.83633583344821831711791
E_{5}	4	9.96776488080049645045286
	6	9.94916096521456234416491
	10	9.94916096280959690024832
	15	9.94916096280959690024832
	20	9.94916096280959690024832

Handy (1985) are correct, whereas there is significant error in the values found by Lai and Lin (1982) for $g=2.0$.

We have also examined the question of how the value of R affects the eigenvalues. Table 7 presents the results for the cases $\lambda=1.0, g=1.0$ and $\lambda=100.0, g=100.0$, each computed for E_{1} and E_{5}. It is readily apparent that the choice of $R=10.0$ is optimal for the precision obtained in this study.

4. Conclusions

The analytic continuation procedure of Holubec and Stauffer (1985) offers a straightforward solution to the problem of obtaining high-accuracy wavefunctions and eigenvalues for Schrödinger's equation. Although the procdure is based on functions $P(z)$ and $Q(z)$ which are finite polynomials, in practice it works very well in any case where the functions (or the potential) can be expanded in a Taylor series, and analytic coefficients obtained. This was demonstrated in their paper by computing the phase shifts for the potential

$$
\begin{equation*}
V(r)=-(2+2 / r) \exp (-2 r) \tag{15}
\end{equation*}
$$

The only real limit to the precision is the precision of the computer employed to carry out the calculations. The disadvantage of this technique lies in the requirement to construct the Taylor series (11) and (12) and the corresponding recurrence relations (13) for each specific potential under study. However, if high precision is required in the result, this is not an exorbitant cost.

It is obvious that this approach can be applied readily to a variety of potential forms. Work is currently in progress on the oscillator problem with a perturbation of the form $\lambda x^{2 \alpha}$. Similar high-accuracy results are obtainable in this problem as well.

References

Bessis N and Bessis G 1980 J. Math. Phys. 212780
Fack V and Vanden Berghe G 1985 J. Phys. A: Math. Gen. 183355
Flessas G 1981 Phys. Lett. 83A 121

- 1982 J. Phys. A: Math. Gen. 15 L97

Garcia S and Killingbeck J 1979 Phys. Lett. 71A 17
Haken H 1970 Encyclopedia of Physics vol 25/2C (Princeton, NJ: Van Nostrand)
Handy C R 1985 J. Phys. A: Math. Gen. 183593
Holubec A and Stauffer A D 1985 J. Phys. A: Math. Gen. 182141
Kaushal R 1979 J. Phys. A: Math. Gen. 12 L253
Killingbeck J 1979 Comput. Phys. Commun. 18211
Lai C and Lin H 1982 J. Phys. A: Math. Gen. 151495
Mitra A 1978 J. Math. Phys. 192018
Risken H and Vollmer H 1967 Z. Phys. 201323
Varma V 1981 J. Phys. A: Math. Gen. 14 L489
Whitehead R, Watt A, Flessas G and Nagarajan M 1982 J. Phys. A: Math. Gen. 151217

