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High-precision calculation of the eigenvalues for the 
x2 + Ax2/( 1 + gx’) potential 

R J W Hodgson 
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada 
KlN9B4 

Received 24 July 1987 

Abstract. An analytic continuation procedure using a Taylor series is used to produce very 
accurate wavefunctions and eigenvalues for the one-dimensional anharmonic oscillator 
governed by the potential V ( x )  = x 2 +  A x 2 / (  1 + gx’). 

1. Introduction 

Considerable interest has centred on analytical and numerical solutions of the one- 
dimensional Schrodinger equation with the anharmonic potential 

(1) 

Mitra (1978) has pointed out that this potential is related to certain specific models 
in laser theory (Haken 1970) as well as zero-dimensional field theory (Risken and 
Vollmer 1967). 

A variety of numerical procedures have been employed to obtain the eigenvalues 
for the ground state and first few excited states for a range of values of A and g. The 
Ritz variational method used in combination with the Givens-Householder algorithm 
was used by Mitra (1978) to determine the ground state and first two excited states. 
Problems were encountered for large values of g. Kaushal (1979) used perturbation 
theory for the restricted class having small g and large A. The potential was expanded 
under the condition gx2 < 1. Bessis and Bessis (1980) avoided the numerical quadrature 
in the approach of Mitra (1978) by expanding in terms of a basis set of harmonic 
oscillator functions. They obtained eight-digit accuracy for the ground state and first 
three excited states for A and g ranging from 0.1 to 500. Lai and Lin (1982) formed 
the [ 6 , 6 ]  Pad6 approximants to the energy perturbation series to obtain an accuracy 
similar to that of Bessis and Bessis (1980). First-order perturbation theory and direct 
numerical integration were employed in the calculations by Killingbeck (1979) and 
Garcia and Killingbeck (1979). Fack and Vanden Berghe (1985) used direct numerical 
integration of the Schrodinger equation by introducing a finite difference representation 
of D2y(x). Finally, Handy (1985) has employed the Hankel-Hadamard moment 
determinant analysis to obtain upper and lower bounds for the ground and first excited 
states. 

Exact solutions to the above problem have also been presented by Flessas (1981, 
1982), Varma (1981), Lai and Lin (1982) and Whitehead et a1 (1982). These are 
obtained under the restrictive conditions A <O,  g >  0 and A = A ( g ) ,  E = E ( g ) .  

V ( x )  = x2+ Ax2/( 1 + gx’). 
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In this paper an analytic continuation approach originally introduced by Holubec 
and Stauffer (1985) is used to obtain the eigenvalues and eigenfunctions for the potential 
(1) to very high accuracy. Carrying out the computations on a 32-digit precision 
computer, it is not too difficult to obtain results accurate to this precision. 

2. Analytic continuation 

The standard Taylor series approach to the solution of a differential equation ( D E )  

with initial values given at zo is to approximate the solution in the neighbourhood of 
zo by a truncated Taylor series. The values of the derivatives at zo are determined from 
successive differentiations of the DE. One then proceeds to construct a new Taylor 
series about z1 = zo+ h using the derivatives of the first series. This process continues 
to generate an analytic continuation of the solution of the DE along the path 
{ z o ,  z l ,  z 2 , .  . .}. This technique requires successive differentiation of the DE, and 
becomes restricted if the DE has singularities anywhere in the complex z plane. 

Holubec and Stauffer (1985) have proposed a way around this problem based on 
the idea of analytically continuing a Frobenius series rather than a Taylor series. The 
method is applied to second-order linear DE with a regular singularity and with analytic 
coefficients which are finite polynomials. In practice the method works for arbitrary 
order and for more general analytic coefficients. The technique was originally applied 
to second-order linear DE of the form 

u ” + P ( z ) u ’ + Q ( z ) u  = o  (2) 
with P ( z )  and Q ( z )  finite polynomials. 

Stauffer (1985) so that we can handle a DE of the form 
In order to handle the potential ( 1 )  we have modified the method of Holubec and 

U”+[P(Z)/Q(Z)]U = o  (3)  
or 

Q(Z)U”+P(Z)U = o .  
Working with the Schrodinger equation 

(4) 

( 5 )  

(6) 

(7) 

U ”  - V( z )  U = Eu 

P ( z )  = E + ( E g  - A  - l ) z 2 - g z 4  

Q( z )  = 1 + gz2. 

with V ( z )  having the form ( l ) ,  P ( z )  and Q ( z )  are both finite polynomials 

Naturally this approach will not work if we are close to points such that Q(z) = 0. 
The general solution U is expanded in a Taylor series about the point zo as 

N, 

U =  ci(z-zo)’. (8) 
I =o 

The polynomial coefficients P ( z )  and Q ( z )  must be expanded in a similar manner: 

P ( z ) =  F ; ( Z - Z , ) I  
,=0 
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By substituting these expansions for U and for P and Q into the DE, and by setting 
the coefficients of the different powers of ( z  - zo) to zero, we arrive at a set of recurrence 
relations to generate the coefficients c,. 

For the potential form ( 1 )  the complete expansions for P ( z )  and Q ( z )  become 

P ( z )  = E + ( E g  - 1 - A ) z ; -  g ~ i + { 2 ( E g  - 1 - A ) z ~ - ~ ~ z ~ } ( z  - z O )  

+ { E g  - 1 - A  -6gz;} (z  - z O ) *  -4gzO(z - ~ 0 ) ~  - g ( z  - ~ 0 ) ~  

Q ( z )  = 1 + g z ~ + 2 g z o ( z  - zo) + g ( z  - zo)2. 

( k + 2)( k + 1 ) dockT2 + ( k + 1 ) k d ,  ck+,  + k (  k - 1 ) d z c k  + 

( 1 1 )  
( 1 2 )  

These lead to the general recurrence relation for the c, coefficients, 

pick -, = 0 (13 )  

which is valid for k 0 with the understanding that Ck = 0 if k < 0. The initial values 
co= u ( z o )  and c1 = u ' (zo)  are used to start the series. 

If we start from the origin, we can use the above results with zo = 0. In the general 
case a Frobenius series is used, with the appropriate characteristic exponent. For the 
oscillator problem under examination here, the characteristic exponent is 0, and so 
the regular Taylor series about zo = 0 suffices. 

, = 0  

3. Results 

We have applied the analytic continuation procedure as described to compute the first 
few eigenvalues with the same boundary condition as employed by Fack and Vanden 
Berghe ( 1 9 8 9 ,  namely that the Dirichlet boundary condition U( R )  = 0 is imposed with 
R = 10.0. We have also examined the effect of varying R. The eigenvalues are deter- 
mined by starting at the origin with zo = 0 and using the Taylor series to compute the 
values of U and U' at the first step z = h. The range for z is subdivided into N,  equal 
parts, so that h = R/N, .  Then zo is set to h and the series ( 8 )  used to compute U and 
U' at 2h. In this way the wavefunction is generated out to z = R. All of this is done 
using an  initial guess for the eigenvalue E. The value of E is then adjusted until the 
value of u ( R )  is as close to zero as is possible within the precision of the calculations. 

In practice we first find two values of E which lie on either side of the correct 
eigenvalue, such that they produce values for u ( R )  having opposite signs. We then 
use the secant method to generate a new guess for E, and repeat the process until we 
converge on the correct value. The iterates for E are generated using 

We have found that 7-10 iterations are required on average to achieve the precision 
presented in the tables. 

The initial conditions at z = 0 must be chosen properly to produce either even or 
odd wavefunctions. Wavefunctions with even parity are generated by choosing u ( 0 )  = c 
and u ' ( 0 )  = 0, with c a n  arbitrary normalisation constant. Odd-parity wavefunctions 
require the choice of u ( 0 )  = 0 and u ' ( 0 )  = c. The ground state has even parity and  the 
excited states oscillate between even and odd  parity. 

The results were also computed for the special case of A = g = 0 for which exact 
eigenvalues are readily obtained ( E ,  = 2i - 1). We found that our results were accurate 
to the 32-digit precision used in the calculations. 
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Table 1. Comparison of eigenvalues obtained by various methods: ( a )  present study, ( b )  
Fack and Vanden Berghe (1985), ( c )  Mitra (1978), ( d )  Bessis and Bessis (1980), ( e )  Lai 
and Lin (19821, (f) Killingbeck (1979), (g) Handy (1985). 

A=0.1, g=O.1 
~~~~ ~ 

E ,  ( a )  1.043 1737130444452337787008705461 
( b )  1.043 173 71 
( c )  1.043 17 
( d )  1.043 173 71 
( e )  1.043 173 71 
(f) 1.043 174 08 
(g)  1.043 173 71 < E ,  < 1.043 173 72 

E ,  ( a )  3.1200818640161527086458865365235 
( 6 )  3.120081 86 
(c )  3.12008 
( d )  3.120081 86 
( e )  3.120081 86 
(g) 3.120081 864<€,<3.120081 865 

E, ( a )  5.1810947858847009271104090728883 
( b )  5.181 094 78 
(c )  5.18109 
( d )  5.181 09479 
( e )  5.181 09479 
(f) 5.181 095 06 

E4 ( a )  7.231009980655889245 108368931495 1 
( b )  7.231 009 95 
( d )  7.231 009 98 
( e )  7.231 009 98 

E,  ( a )  9.2728169700352522545824384789065 
( 6 )  9.272 81691 
(f) 9.272818 

Tables 1-6 present our results for seven sets of A, g values, and compare them with 
calculations of other authors. In all of the computations N, was set to 40, as we found 
that this value was better than required to obtain the precision desired. The value of 
N, had to be varied in order to adjust the step size small enough to obtain this accuracy. 
For values of A and g s  10, values of N, in the range 80-100 were sufficient, whereas 
this had to be increased to 200-300 for those cases where g = 100. Even with this 
choice, the results for g = 100 are only accurate to 21-24 digits instead of the 32 
obtained in the other cases. Higher precision requires larger N,,  more iterations and 
longer computation times. 

As can be seen from tables 1-6, our results demonstrate that the calculations carried 
out by the other authors are in general quite good but there are some deficiences. In 
the cases where comparisons can be made, the results of Killingbeck (1979) are 
inaccurate in the last few digits. The results obtained by Fack and Vanden Berghe 
(1985) are accurate to nine places for the lowest eigenvalues, but tend to be less 
accurate for E4 and E5. Their results for the A = 100 cases, however, are not as accurate 
as those obtained by others. The results obtained by Mitra (1978), Bessis and Bessis 
(1980) and Lai and Lin (1982) are generally good to the accuracy quoted, but most 
did not compute the higher eigenvalues. The upper and lower bounds computed by 
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Table 2. Eigenvalues (same format as in table 1). 
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A = 0.1, g = 100.0 

( a )  1.000841102403452905 18 
( b )  1.000841 10 
( c )  1.00084 
( d )  1.000841 1 
(f) 1.000 841 43 

( a )  3.000 983 177 778 238 663 773 08 
( 6 )  3.000983 18 
( c )  3.00098 
( d )  3.000983 1 

( a )  5.000927544679517518352 
( b )  5.000 927 54 
( c )  5.00093 
( d )  5.000 925 7 
(f) 5.000 927 8 
( a )  7.00098449583601929456467 
( b )  7.000 984 47 
( d )  7.000 984 5 

( a )  9.000 948 590 765 685 440 341 
( b )  9.000 948 53 
(f) 9.000948 

Table 3. Eigenvalues (same format as in table 1). 

A = 100.0, g =0.1 

9.9761800877230210550297933339034 
9.976 178 31 
9.976 18 
9.976 180 09 
9.976 180 09 
9.976 180 
9.976 180 07 < E, < 9.976 180 12 
29.781191110776574481828222255353 
29.781 175 75 
29.781 19 
29.781 191 1 
29.781 191 11 
29.781 191 1Oc E,<29.781 191 13 

49.292690504626860802043097677054 
49.292 623 58 
49.292 69 
49.292 690 5 
49.292 690 50 
49.292 69 
68.513062234511134635 185 514093924 
68.512 861 08 
68.513 052 2 
68.513 062 23 
87.444711409977161062121962028609 
87.444 233 67 
87.444 7 
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Table 4. Eigenvalues (same format as in table 1). 

A = 100.0, g = 100.0 

E ,  ( a )  1.836335833448218317 11792 
( 6 )  1.836 334 44 
( c )  1.8364 
( d )  1.8363850 
(f) 1.836 337 3 

E, ( a )  3.9830983394878128760566410942 
( b )  3.983 098 36 
( c )  3.983 1 
( d )  3.983 099 2 

E, ( a )  5.928 328 571 544 726 169 988 12 
( b )  5.928 327 90 
( c )  5.928 
( d )  5.928 352 5 
(f) 5.928 329 3 

( a )  
( b )  7.984 443 54 
( d )  7.9844448 

E ,  7.984 443 523 273 823 549 904 268 579 1 

E,  ( a )  9.949 160 962 809 596 900 248 32 
( b )  9.949 160 38 
(f) 9.949 162 

Table 5. Eigenvalues (same format as in table 1). 

A = 10.0, g = 10.0 

E ,  ( a )  
( 6 )  1.58002233 
(c )  1.58002 
( d )  1.580 024 9 

( a )  
( 6 )  3.879 036 83 
( c )  3.87903 
( d )  3.879 037 2 

1.580 022 327 391 499 803 559 412 471 3842 

E, 3.879 036 830 882 568 129 891 720 413 272 4 

E,  ( a )  5.8327675324653617413888314778054 
( b )  5.832 767 52 
(c )  5.83277 
( d )  5.832 769 2 

( a )  
( 6 )  7.903 154 13 
( d )  7.903 1549 

E ,  7.903 154 159 824 102 829 908 846 549 867 6 

E,  ( a )  9.882298728779887266853513 1251867 
( b )  9.882 298 66 
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Table 6. Eigenvalues (same format as in table 1) .  

A =0.1, g = 2 . 0  

E ,  ( a )  
( e )  1.017 281 60 
( g )  

1.017 180 290061 535 662 051 677 187 643 4 

1.017 176< E , <  1.017 185 

E,  ( a )  3.0327657934214400066699744004934 
( e )  3.032 957 27 
( g )  3.032 758 < E ,  < 3.032 772 

A = 100.0, g = 2.0 

E ,  ( a )  8.7582786256056893295894188387445 
( e )  8.758 278 63 
(8) 8.757 2 < E ,  < 8.759 4 

E,  ( a )  23.743325864919321032558358876985 
( e )  23.743 326 04 
( g )  23.73 < E,  < 23.75 

Table 7. Eigenvalues as a function of R.  

R 

E ,  4 
6 

10 
15 
20 

E,  4 
6 

10 
15 
20 

A = g = 1.0 

1.2323511735163482181108420568226 
1.232350723406058865 1962185606284 
1.2323507234060578138620699586814 
1.232350723406057813 8620699586814 
1.232350723406057813 8620699586814 

9.7003530516565117644818549738161 
9.684042017 1038508201230689591914 
9.684 042 015 230 169 589 613 605 813 520 6 
9.684 042 015 230 169 589 613 605 813 520 6 
9.684 042 015 230 169 589 613 605 813 5206 

R 

E ,  4 
6 

10 
15 
20 

E5 4 
6 

10 
15 
20 

A = g = 100.0 

1.83633659228558486789206 
1.83633583344822055300779 
1.83633583344821831711792 
1.83633583344821831711791 
1.836335833448218317 11791 

9.96776488080049645045286 
9.949 160 965 214 562 344 164 91 
9.94916096280959690024832 
9.94916096280959690024832 
9.949 16096280959690024832 
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Handy (1985) are correct, whereas there is significant error in the values found by Lai 
and Lin (1982) for g = 2.0. 

We have also examined the question of how the value of R affects the eigenvalues. 
Table 7 presents the results for the cases A = 1.0, g = 1.0 and A = 100.0, g = 100.0, each 
computed for E ,  and E5. It is readily apparent that the choice of R = 10.0 is optimal 
for the precision obtained in this study. 

4. Conclusions 

The analytic continuation procedure of Holubec and Stauffer (1985) offers a straightfor- 
ward solution to the problem of obtaining high-accuracy wavefunctions and eigenvalues 
for Schrodinger's equation. Although the procdure is based on functions P ( z )  and 
Q ( z )  which are finite polynomials, in practice it works very well in any case where 
the functions (or the potential) can be expanded in a Taylor series, and analytic 
coefficients obtained. This was demonstrated in their paper by computing the phase 
shifts for the potential 

V ( r )  = - ( 2 + 2 / r )  exp(-2r). (15) 

The only real limit to the precision is the precision of the computer employed to carry 
out the calculations. The disadvantage of this technique lies in the requirement to 
construct the Taylor series (1 1) and (12) and the corresponding recurrence relations 
(13) for each specific potential under study. However, if high precision is required in 
the result, this is not an exorbitant cost. 

It is obvious that this approach can be applied readily to a variety of potential 
forms. Work is currently in progress on the oscillator problem with a perturbation of 
the form Ax'". Similar high-accuracy results are obtainable in this problem as well. 
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